Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 219, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393246

RESUMO

Medicinal plants play a huge role in the treatment of various diseases in the Limpopo province (South Africa). Traditionally, concoctions used for treating tuberculosis and cancer are sometimes prepared from plant parts naturally occurring in the region, these include (but not limited to) Schotia brachypetala, Rauvolfia caffra, Schinus molle, Ziziphus mucronate, and Senna petersiana. In this study, the aim was to evaluate the potential antimycobacterial activity of the five medicinal plants against Mycobacterium smegmatis mc2155, Mycobacterium aurum A + , and Mycobacterium tuberculosis H37Rv, and cytotoxic activity against MDA-MB 231 triple-negative breast cancer cells. Phytochemical constituents present in R. caffra and S. molle were tentatively identified by LC-QTOF-MS/MS as these extracts showed antimycobacterial and cytotoxic activity. A rigorous Virtual Screening Workflow (VSW) of the tentatively identified phytocompounds was then employed to identify potential inhibitor/s of M. tuberculosis pantothenate kinase (PanK). Molecular dynamics simulations and post-MM-GBSA free energy calculations were used to determine the potential mode of action and selectivity of selected phytocompounds. The results showed that plant crude extracts generally exhibited poor antimycobacterial activity, except for R. caffra and S. molle which exhibited average efficacy against M. tuberculosis H37Rv with minimum inhibitory concentrations between 0.25-0.125 mg/mL. Only one compound with a favourable ADME profile, namely, norajmaline was returned from the VSW. Norajmaline exhibited a docking score of -7.47 kcal/mol, while, pre-MM-GBSA calculation revealed binding free energy to be -37.64 kcal/mol. All plant extracts exhibited a 50% inhibitory concentration (IC50) of < 30 µg/mL against MDA-MB 231 cells. Flow cytometry analysis of treated MDA-MB 231 cells showed that the dichloromethane extracts from S. petersiana, Z. mucronate, and ethyl acetate extracts from R. caffra and S. molle induced higher levels of apoptosis than cisplatin. It was concluded that norajmaline could emerge as a potential antimycobacterial lead compound. Validation of the antimycobacterial activity of norajmaline will need to be performed in vitro and in vivo before chemical modifications to enhance potency and efficacy are done. S. petersiana, Z. mucronate, R.caffra and S. molle possess strong potential as key contributors in developing new and effective treatments for triple-negative breast cancer in light of the urgent requirement for innovative therapeutic solutions.


Assuntos
Anacardiaceae , Apocynaceae , Fabaceae , Mycobacterium tuberculosis , Rhamnaceae , Neoplasias de Mama Triplo Negativas , Tuberculose , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espectrometria de Massas em Tandem
2.
Front Immunol ; 12: 742059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777355

RESUMO

Mycobacterium tuberculosis (Mtb) "a human adapted pathogen" has found multiple ways to manipulate the host immune response during infection. The human immune response to Mtb infection is a highly complex cascade of reactions, with macrophages as preferred intracellular location. Interaction with the host through infection gives rise to expression of specific gene products for survival and multiplication within the host. The signals that the pathogens encounter during infection cause them to selectively express genes in response to signals. One strategy to identify Mtb antigens with diagnostic potential is to identify genes that are specifically induced during infection or in specific disease stages. The shortcomings of current immunodiagnostics include the failure to detect progression from latent infection to active tuberculosis disease, and the inability to monitor treatment efficacy. This highlights the need for new tuberculosis biomarkers. These biomarkers should be highly sensitive and specific diagnosing TB infection, specifically distinguishing between latent infection and active disease. The regulation of iron levels by the host plays a crucial role in the susceptibility and outcome of Mtb infection. Of interest are the siderophore biosynthetic genes, encoded by the mbt-1 and mbt-2 loci and the SUF (mobilization of sulphur) operon (sufR-sufB-sufD-sufC-csd-nifU-sufT), which encodes the primary iron-sulphur cluster biogenesis system. These genes are induced during iron limitation and intracellular growth of Mtb, pointing to their importance during infection.


Assuntos
Biomarcadores/metabolismo , Homeostase/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Ferro/metabolismo , Tuberculose/metabolismo , Animais , Humanos , Mycobacterium tuberculosis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA